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ON GENERALIZED TWO-DIMENSIONAL PLATE THEORY-U*

E, REISSNER

Massachusetts Institute of Technology

Abstract-In elaboration of a recently proposed procedure for the derivation of two-dimensional shell theory
from three-dimensional elasticity theory the special case of a flat plate is considered explicitly, The starting point
of the work is a suitable version of elasticity theory including moment as well as force stresses. It is shown that
a certain straightforward but not previously considered reduction of three-dimensional equilibrium and compa­
tibility equations leads to suitable two-dimensional equilibrium and compatibility equations, while leaving the
three-dimensional aspects of the problem in the form of a system of integro-differential constitutive equations.
The derivation of two-dimensional constitutive equations then is one involving parametric expansion or iteration,
in conjunction with the stipulation of smallest characteristic length large compared to plate thickness.

1. INTRODUCTION

THE principal purpose of this paper is to describe, by means of a somewhat simpler special
case of independent interest, a recent new approach to the problem of deriving two­
dimensional shell theory from three-dimensional elasticity theory [5]. In applying this
approach here to the special case of the initially uncurved shell, the two-dimensional
results are developed appreciably further than was done for the general case in the earlier
paper [5].

The main point of our recent approach to deriving two-dimensional shell theory is that
by basing this derivation on a three-dimensional theory of elasticity which includes the
consideration of moment stresses the task becomes simpler than on the basis of a theory
without moment stresses, Mathematically, this simplification may be ascribed to the fact
that in the theory including moment stresses all equilibrium and compatibility equations
are first order differential equations, while in the theory without moment stresses one has
to deal with a system including zeroth order, first order and second order differential equa­
tions, A physical reasoning, which was in fact the starting point ofour earlier considerations,
is that there ought to be advantages to deriving a two-dimensional theory in which forces
and moments play an equally important role from a three-dimensional theory for which
this is the case,

2. THE THREE-DIMENSIONAL PROBLEM

With reference to cartesian coordinates x, y, z we consider the space bounded by planes
z = ± c, The differential equations of the problem are six equilibrium equations

a xx,x +a yx,y +a zx,Z = 0,

a X}',X + a yy,y + a zy,z = 0,

'xx.x+'yx,Y+'zx,z+azx-axz = 0

'xy,x + 'n,y + 'zY.z +aZy - a yz = 0

'xz,x+'YZ,Y+'zz,z+aXy-ayX = 0

(1)

* Supported in part by the Office of Naval Research under a contract with the Massachusetts Institute of
Technology.
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for nine force stress components (J and nine moment stress components T, where for
simplicity's sake volume forces and moments are assumed to be absent, together with
eighteen compatibility equations which are written in the semi-integrated form (which
follows from corresponding vectorial formulas in [5] or on the basis of explicit strain
displacement relations in [6])

(2)

and

CXy = f,X)' + ZKxy - s: kzz d( + s: [CZ )' - «( - z)kzylx dC

cyx = Byx+ZKyx + s: kzzd(+ s: [czx-«(-z)kzxLd(,

c)'y = f,yy+ZK yy + s: [cZy-«(-z)kzYJ.yd(,

(3)

(4)

}' .... ,x-yx.y = KXp-Kyx ' (5)

In this the c, Ii and y may be designated as force strains and the k, K and .A. as moment strains.
The C and k are functions of x, y, Z while the f" y, K,.A. depend on x and y only.

Equations (1), (2) and (4) are a system of eighteen equations for thirty-six functions
(J, T, e, k. A system of thirty-six equations for thirty-six unknowns is obtained upon comple­
menting (l), (2) and (4) by eighteen stress-strain relations:

vA
(Jxx = -~-,

oCxx

vA
(Jx)' = -;::)_._'-, ... .,

(e xy
(6)

where A is a given function of the eighteen arguments C and k.
Equations (1) to (6) are further complemented by six boundary conditions for each

of the two faces of the shell, of the form

z = ±c, (7)

where p and q are given functions of x and y.
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Writing, on the basis of (7) and (1),

we have further, using equations (7) once more,

fc (axx,x+ayX,y) d( +p; - p; = 0, ... ,
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(8)

(9)

The six equations (9) may be recognized, upon introduction of defining equations for stress
resultants and couples, as the equilibrium equations of two-dimensional plate theory. At
the same time, equations (3) and (5) are the associated two-dimensional compatibility
equations, Equations (9), (5) and (3) as they stand, are specializations, in scalar form, of the
corresponding vectorial equations for shells which are derived in [5].

For a two-dimensional theory of plates it is necessary to complement the system
(9), (5) and (3) by a system of two-dimensional stress strain relations, that is, by a system of
relations expressing stress resultants and couples in terms of the strain measures G, y, K, Ie.
The derivation of such a two-dimensional system of relations, as a rational consequence
of the three-dimensional system (2), (4), (6) and (8), may be said to represent the essence of
the problem of deriving two-dimensional plate theory from three-dimensional elasticity
theory.

3. THREE-DIMENSIONAL STRESS-STRAIN RELATIONS FOR A CLASS OF
TRANSVERSELY ISOTROPIC PLATES

A system of stress-strain relations which is convenient in connection with the applica­
tion of the proposed procedure and which at the same time leads to somewhat more general
results than previously stated, is as follows:

Eeyy = ayy-vaXX-vzazz'

Gezy = a zy'

Gexz = a xz ,

GeyZ = a yz , (10)

LXX = cZrkxx '

Lyx = cZrkyx '

LZX = czrzkzx '

Lxy = cZrkxy ,

T vy = cZrk"y"

Lzy = cZrzkzy ,

LXZ = C
Z
Akxz '

LyZ = cZAk yz '

L ZZ = cZAzkzz .

( I I )

In this the factor cZ is introduced in order that the r and A have the same dimension as the
E and G,
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(16)

(17,18)

Vanishing of the coefficients r, r", A and Az reduces the system (10) and (11) to a known
form for media unable to support moment stresses, inasmuch as then exy = eyX =hxy, etc.
in equations (10), as a consequence of CJxy = <7yX ' etc.

4. INTEGRO-DIFFERENTIAL-EQUATIONS FORM OF THE PROBLEM

In order to derive a two-dimensional system of stress-strain relations from the three
dimensional system (10) and (11) we first write (10) and (11) on the basis of equations (2),
(4) and (8) as a system of integro-differential equations. It is sufficient to write out nine of
these eighteen integro-differential equations. The remaining nine are analogous in form.

E{Dxx+ZKxx + J: [ezx-«(-Z)kzxlxd(}

= <7xx -V<7yy -V{p; - fe (<7xz.x+<7yz,y)d(} (12)

E{DXy+ZKXY - J: kzzd(+ J: [ezv-«(-Z)kzyLd(} = (1+v)CJXY ' (13)

G{Yx+ J: kzxd(+ J: ezz,x d(} = CJx;: (14)

Gezx = p; - fe (CJxx.x+CJyxs)d(, (15)

Eezz = (EIEz{P; - fe (CJxz.x+ CJyZ,y) d(] -v.(CJxx+CJyv)'

e2r{ K xx + J: kzx,x d(} = t.w e2A{Ax+ J: kzz,x d(} 'xz'

e2 rzkzx = q; - fZ (txx,x+tYX,.v+<7zx <7xz )d(,
-c

(19)

(20)

A two-dimensional theory as a rational consequence of the system (12) to (20) is now
based on the concept of a smallest characteristic length L, this length being large compared
to the plate thickness 2e. Briefly, L is that length which permits·writing the order of magni­
tude relations:

CJxz,Z = 0(<7xzlL), etc. (21)

Equations (21) may be used systematically by introducing dimensionless coordinates
x = Lx, Y= Ly, Z = ez and by expanding the solutions of the resulting system ofequations,
having independent variables X, y, Z, asymptotically in powers of the small parameter elL.
For the present purposes it is more convenient, and effectively equivalent, to make use of
Goldenweiser's concept of iterative procedures in connection with the step from three to
two dimensions [1].
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As a point of departure for the iterative procedure, we rewrite part of th~ system (12)
to (20) with the help of equations (1), (5) and (8) in a form more convenient for our purposes,
as follows:

E{Cxx + ZKxx + J: [ezx -(( -z)kzxlx d( = axx - vayy

-Vz{p; - Fe~; - f}axx,x+aYX,y)dl1+Txx,x+TYX,y+Tzx"lx d(

- Fe [p; - fe (aXy,x+ayy)dl1+TXy,x+Tyy,y+TZy,Jy d(}, (12*)

E{cxy +iZ(Kxy + Kyx)+iz(yy,x-yx,y)- J: kzzd(+ J: [eZy-((-Z)kzylxd(}

=i(1 + v)(axy + aYX) -i(1 + V)(Txz,x + Tyz,y + Tzz,z)' (13*)

G{Yx+ J:kzxd(+ J:ezz,x d(} =P;- Fe (axx,x+ ayX,y) d(+Txx,x+ Tyx,y+ Tzx,z' (14*)

Eezz = (E/Ez){P; - Fe [p; - fe (axx,x+ ayx) dl1 + Txx,x + Tyx,y + Tzx"lx d(

-fe [p; - fe (aXy,x+ayy) dl1 + Txy,x + Tyy,y + TZY"l d(} -vz(axx+ayy), (16*)

C
2 A(cyx,x- CXX,Y+ J: kzz,x d() = TX" (18*)

(19*,20*)

(22)

(23)

The corresponding equations (15*) and (17*) are the same as (15) and (17), respectively.
Equations (12*) to (20*) involve the stresses aX" ayz ' azz , aU' azy implicitly only, In

order to take account of the boundary conditions for z = ±c for azx' azy and azz the system
(12*) to (20*) is complemented by the relations

P;-P;+ fe(axx,x+ayx)d(=O, P;-P;+ fe(aXy,x+ayy)d(=O,

P: -p; + fe [p; - fe (axx,x + ayX,y) dl1 + Txx,x+ Tyx,Jx d(

e [' • ]+ J-e p; - J-e (aXY,x +ayy ) dl1 + TXY,x + Tyy,y d( = O.
.y

At the same time, equations (12*) to (20*) remain subject to the six boundary conditions (7)
for Tzx ' Tzy and Tzz .

For simplicity's sake it will be assumed from here on that the only tractions applied
to the faces Z = ±c are those corresponding to the case of transverse bending that is we
will set

+ + + + + 0
p~ = Pi = q~ = qi = qz- = , P: = ±tP· (24)
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5. THE ITERATIVE PROCEDURE

We use as a priori assumptions for an iterative procedure that x and y-derivative terms
in the integra-differential equations (12*) to (20*) will be small compared to all other terms.
Designating quantities pertaining to the nth iterative step by <:~;, etc. this means that we
solve (12*) to (20*) (with the assumed simplifications in regard to face tractions) by writing
for n = 1, 2, 3, ...

E{<:ln)+ZKln)+ iZ[e(n~I)_(r-Z)k(n-llJ d r = a(n)_va(n)
x::f xx zx S zx ,x S xx yy

o

- v {Ip + IZ [IS (a(n~ 2) + a(~~2») dIJ - ,In.- 2) - ,(~ ~ 2) - T(n- IlJ dC
z 2 XX,X }X,y XX,X JX.y zx,s -

-c -c ,x

It [I' J }(n-2) (n-2) (n~2) (n" 2) (n-I) y

+ ~c -c (a xy,X + ayy,y ) dIJ - 'xy,x -, yy,y - 'zy" ,y de, ,

E{ <:(n) + IZ(K(n) + K(n») + Iz(},ln - 1) - .y(n - I») - i.' kin) dl,Y + iZ
[e(n - Il- (r - ~)k(n - 1'J d Y)

xy 2 xy yx 2 .v.x x.y zz .Z}' ,:>':" xy ,x '=- r
o 0 )

I
z

In - 1) . (n - 1) Y (n·· 1) (n - I) In I
c (axx,x +ayX,y jde,+,xx,x +'YX,y +'ZX.Z'

Geln) = - IZ

(aln - I) + a(n - I») dr
zx XX,X yX,y "='~

---('

Ee(n) = (EjE ){_Ip+ IZ [IS (a(n~2)+aln-2»)dlJ+,ln-2)+,(n-.2)+,ln-I)J d(
zz z 2 XX,X yx xx.x yX,y ZX,S

-c -c ,x

+ Iz [IS (aln - 2) + a(n- 2») dIJ + ,(n- 2) + ,(n- 2) + ,(n~ I)J dC} -v.(aln)+ a(n»)
xy,X YY,Y xy,x yy,}' zY.( - - xx YJ '

~C -c ,y

c2r{Kln)+ iZ
k(n-I)d r } = ,In)xx ZX,X S xx'

o

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32,33)

with e~~, a~~ I), etc, all being zero, by definition, and with p being of the same order as the
terms associated with it.
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In addition to this, equations (22) and (23) imply the relations
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f c (a~":L +a~~) d( = 0, f c(a~l,x +a~~) d( = 0, (34)

p- fc [fc (a~1,x+a~~)d'1+'~~,x+'~~,ylxd(

-f c [ fc (a~l,x + a~~) d'1 + ,~~,x + '~~,yJ,y d( = 0,

and the face boundary conditions for 'zX' 'zy, 'zz are written in the form

(35)

Z = ±c, ,~~ = 0, ,~~ = 0, ,~~ .= 0, (36)

Finally, the associated two-dimensional compatibility equations which follow from (3)
and (5) are written as

(n) ( (n)+ (n») + (n) - °I::yy,xx - I:: yx I::xy ,xy I::xx,yy - ,

11K(n) + K(n») _ K(n) = 1I
y

(n - I) _ ,,(n - I J)
2\ yx xy ,x xX.Y 2\ x,y , y,x .x'

K(n) _l(K(n) + K(n») = l(y(n-I) _ y(n-I»)yy,x 2 xy yx ,y 2 y,x x,y ,y'

6. THE EQUATIONS OF THE FIRST STEP OF THE
ITERATIVE PROCEDURE

Equations (25) to (39), for the case n = 1, reduce to

E{I::(I)+ZK(l)'} = a(l)-va(l)
xx xx xx yy'

G{y(l)+ JZ k(l) dr} = ,(I)
x zx S zX,X'

o

C2rK~~ = ,~~, °= ,~~),

c2rzk~~ = ,~~), c2Azk~~) = ,~~J.

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Equations (34) to (37) remain as is with "(1)" written for "(n)" and equations (38) and (39)
become

l(K(I)+K(I») -K(I) = °2 yx xy.x xx,}' , K(I) -*(K(l)+K(I») = °yy,x <. xy yx,y . (46)

It follows next from (41) and the corresponding equation involving I::~~ that

(47)
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This, together with the second equation in (45) and with the boundary conditions (36) for
,~~), gives

(48)

Similarly, it follows from (42), the first equation in (45) and the boundary conditions (36)
for ,~~ that

k~~ = 0, (49)

Having (48) and (49) we have then as expressions for the non-vanishing components of
stress implied by the equations of the first step of the iterative procedure

(1 v2 )a(1) = E(s(1)+ve(1)+zK(1)+VZK(I»xx xx ~yy xx yy , (50)

(1+ v)a( I) = (1 + v)a(1)xy yx .1.(s(1) + e(1) + ZK(l) + ZK(l)
2 xy ~yx xy yx '

.,.(1) = .1.c 2r(K-(1) + K( 1»
""xy 2 xy yx' ••..

(51)

(52)

The six functions s~~, e~~) + s~~, K~~, K~~), KW + K~~) in this are subject to three compatibility
equations consisting of the two equations (46) and of

eO ) (e(1) + e( I ) L'( 1 ) - 0
{*y}"XX - ('·X}' ('yx ~x}' -r- (;.xx•.vy - , (53)

and of three equilibrium equations, which in accordance with (34) and (35) are of the
form,

(54)

fe {Fe [(a~~.x + a~~~vl.x+ (a~lv~x + a~i·~v).y] dlJ

+ ('~~.x + '~~~y).x + ('~~~x + ,~~~y).y} d( = p, (55)

Equations (50) to (55) may be recognized as the results of classical thin-plate theory,
generalized by the incorporation of the moment stress terms ,(I), in the form ofsix differential
equations for the six quantities f:~~, I;~~), s~V+ F.~~), K~11, K~~) and K~~)+ K~~). The order of this
system is not changed by the incorporation of the moment stress terms and, accordingly,
an appropriate version of the classical Kirchhoff boundary conditions is associated with
these equations.

The remaining measures of strain and stress, as given by the first step of the procedure
are e~~) (and e~~» and e~;) as in (43), while on the basis of (8) and (1) and consistent with the
foregoing,

ra(1) = (I) (l) " (56)zx (a xX,x + ayx) di"

and
-c

a( 1) a~~+ '~~.x+ T;,~,y, (57)xz

with corresponding expressions for a~~) and a~,;), and

(58)
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7. RANGE OF VALIDITY OF ITERATIVE PROCEDURE
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In speaking of an iterative procedure we admit the possibility of procedures differing
from the one proposed in Section 5. To see the limitations of the proposed procedure we
note that the characteristic length L associated with the "classical" system of differential
equations (46) and (53) to (55) will be the smallest geometrically representative width of the
plate. It is then seen that the perturbation terms in the second step of the procedure will be
of order c/L and of order c2/L 2-except for the effect of differences in orders of magnitude
in the elasticity coefficients-relative to the quantities ef}, etc. which are to be determined.
Assuming v and Vz of order unity we will then deduce relations such as:

c2 E c2 r cA
---1:1 ---1:1 ~-1:1
L 2 G "" L 2 G "" LE '" ,

as conditions for the validity of the iterative procedure as proposed.
Physically, the principal meaning of these restrictions is that when E and r are bounded

from above in this manner, (or G bounded from below) then transverse shear deformation
comes out as a higher-order-of-smallness effect, leading automatically to a Kirchhoff­
type theory. When E and/or r are not bounded as in (59) then transverse shear deformation
will playa role and not all x and y-derivative terms in the integro-differential equations
(12*) to (20*) may be relegated to the class of higher-order-of smallness terms, as is done in
the system (25) to (33). It is in this sense that the asymptotic theory of Green and Naghdi [2J
appears to be one for which c2 r/L2 G = 0(1) while at the same time E ~ r.

REFERENCES

[IJ A. L. GOLDENWEISER, PMM 26,668 (1962).
[2J A. E. GREEN and P. M. NAGHDI, Q. Jt Mech. appt. Math. 20, 183 (1967).
[3J E. REISSNER, J. Math. Phys. 23,184 (1944).
[4J E. REISSNER, J. Math. Phys. 42, 263 (1963).
[5] E. REISSNER, Proc. 2nd IUTAM Symp. Shell Theory, Copenhagen, 1967. To be publishcd.
[6J E. REISSNER, Int. J. Solids Structures 5,525 (1969).

(Received 5 April 1968; revised 3 September 1968)

A6cTpaKT-Opli pa3pa60TKe He,l:\aBHO npe,l:\JIaraeMoro MeTO,l:\a pcweHlill ,l:\ByxMepHoH Teoplili 060JIO'leK

Ha OCHOBe TpCXMepHOH TeOpI1I1 ynpyroCTI1, I1CCJIC,I:\yeTclI nO,l:\p06HO cnCQliaJIbHblli CJIy'laH rrnocKoli rrJIaCTIi­

HKIi. B acrreKTC Ha'laJIbHOli TO'lKIi, nplolHIiMacTclI COOTBCTCTBYIOll.\IiH BapiiaHT Teoplili yrrpyrocTIi, 3aKJIlO'l­

alOl.J..llili KaK MOMCHTHble HarrpllJKeHloIlI, TaK 11 HanpllJKeHHlI BbI3bIBalOl.J..lHe CIiJIaMIi. YKa3b1BaeTClI, 'ITO

HeKOTopall npllMall, HO HC paHbWC Y'lI1TbIBaCMall pe,l:\YKQHlI TpeXMepHbIX ypaBHeHlili paBHOBeClill Ii

CrrJIOWHOCTIoI rrpIiBO,l:\IiT K COOTBeTCTBYIOll.\IiM ,l:\ByxMepHblM 'lpebMeMQJIM paBHOBCClill TaK Ii CnJIOWHOCTIi,

HeCMOTpll Ha COXpaHeHI1e TpeXMepHblX acrreKTOB 3a,l:\a'lli, B (jlopMe CIiCTeMbI IiHTerpO-,I:\Ii(jl(jlepeHQliaJIbHbIX

orrpe,l:\eJIlIlOll.\IiX ypaBHeHloIli. PeweHlie 3TIoIX ,l:\ByxMepHblX ypaBHeHIiH OKa3bIBaeTClI TOr,l:\a e,l:\IiHCTBeHHbIM

MeTO,l:\OM, KOTOPblli rrpOllBJIlieT napaMeTpli'leCKOe pa3JIOJKeHlie IiJIIi IoITepaWtlO, B CB1I31i C yCJIOBHeM

HaliMeHbweli xapaKTepliCTIi'leCKOli ,l:\JIHHbI rrpI1 cpaBHeHli1i K TOJIll.\IiHe rrJIaCTIiHKH.


