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ON GENERALIZED TWO-DIMENSIONAL PLATE THEORY—IT*

E. REISSNER

Massachusetts Institute of Technology

Abstract—In elaboration of a recently proposed procedure for the derivation of two-dimensional shell theory
from three-dimensional elasticity theory the special case of a flat plate is considered explicitly. The starting point
of the work is a suitable version of elasticity theory including moment as well as force stresses. It is shown that
a certain straightforward but not previously considered reduction of three-dimensional equilibrium and compa-
tibility equations leads to suitable two-dimensional equilibrium and compatibility equations, while leaving the
three-dimensional aspects of the problem in the form of a system of integro-differential constitutive equations.
The derivation of two-dimensional constitutive equations then is one involving parametric expansion or iteration,
in conjunction with the stipulation of smallest characteristic length large compared to plate thickness.

1. INTRODUCTION

THE principal purpose of this paper is to describe, by means of a somewhat simpler special
case of independent interest, a recent new approach to the problem of deriving two-
dimensional shell theory from three-dimensional elasticity theory [5]. In applying this
approach here to the special case of the initially uncurved shell, the two-dimensional
results are developed appreciably further than was done for the general case in the earlier
paper [5].

The main point of our recent approach to deriving two-dimensional shell theory is that
by basing this derivation on a three-dimensional theory of elasticity which includes the
consideration of moment stresses the task becomes simpler than on the basis of a theory
without moment stresses. Mathematically, this simplification may be ascribed to the fact
that in the theory including moment stresses all equilibrium and compatibility equations
are first order differential equations, while in the theory without moment stresses one has
to deal with a system including zeroth order, first order and second order differential equa-
tions. A physical reasoning, which was in fact the starting point of our earlier considerations,
is that there ought to be advantages to deriving a two-dimensional theory in which forces
and moments play an equally important role from a three-dimensional theory for which
this is the case.

2. THE THREE-DIMENSIONAL PROBLEM

With reference to cartesian coordinates x, y, z we consider the space bounded by planes
z = +c. The differential equations of the problem are six equilibrium equations

Oxxxt Cyx.y +0sxz = 0, Texx T Ty, Tax,z +O— Oy, = 0
Oxyx 0y, +0z,, =0, Tayx T TopyF Tape F 02—y, =0 (1
ze,x+6yz,y+0zz,z = 09 sz.x+Tyz,y+Tzz,z+ny—6yx =0
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for nine force stress components ¢ and nine moment stress components 1, where for
simplicity’s sake volume forces and moments are assumed to be absent, together with
eighteen compatibility equations which are written in the semi-integrated form (which
follows from corresponding vectorial formulas in [5] or on the basis of explicit strain
displacement relations in [6])
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In this the e, ¢ and y may be designated as force strains and the k, k and 4 as moment strains.
The e and k are functions of x, y, z while the &, 7, x, 4 depend on x and y only.

Equations (1), (2) and (4) are a system of eighteen equations for thirty-six functions
0.1, e, k. A system of thirty-six equations for thirty-six unknowns is obtained upon comple-
menting (1), (2) and (4) by eighteen stress—strain relations:

84 cA CA cA
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(6)

where A is a given function of the eighteen arguments e and k.
Equations (1) to (6) are further complemented by six boundary conditions for each
of the two faces of the shell, of the form

z=4c, O =pi. O =P T =4s N

where p and g are given functions of x and y.
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Writing, on the basis of (7) and (1),

Oux = f (Gt Oy

Tex = Q; - J (Txx,x+ yx,y+qzx xz) dC» cees

we have further, using equations (7) once more,

f (O-xx,x+o-yx,y)dc+p;_p; = 0:-”»
: C ©)
f (Txx,x+ryx,y+azx'—0-xz) dC+q: '_qx_ = 0, e

The six equations (9) may be recognized, upon introduction of defining equations for stress
resultants and couples, as the equilibrium equations of two-dimensional plate theory. At
the same time, equations (3) and (5) are the associated two-dimensional compatibility
equations. Equations (9), (5) and (3) as they stand, are specializations, in scalar form, of the
corresponding vectorial equations for shells which are derived in [5].

For a two-dimensional theory of plates it is necessary to complement the system
(9), (5) and (3) by a system of two-dimensional stress strain relations, that is, by a system of
relations expressing stress resultants and cpuples in terms of the strain measures ¢, 7, k, 4.
The derivation of such a two-dimensional system of relations, as a rational consequence
of the three-dimensional system (2), (4), (6) and (8), may be said to represent the essence of
the problem of deriving two-dimensional plate theory from three-dimensional elasticity
theory.

3. THREE-DIMENSIONAL STRESS-STRAIN RELATIONS FOR A CLASS OF
TRANSVERSELY ISOTROPIC PLATES

A system of stress—strain relations which is convenient in connection with the applica-
tion of the proposed procedure and which at the same time leads to somewhat more general
results than previously stated, is as follows:

Eexx = Oxx — VO, — V0, Eexy =(l +v)0xy’ Gex: = Oz
Ee,, = (1+v)o,,, Ee,, =0,,—vo,, ~Vv.0o_,, Ge,. =0, (10)
Gezx = Ozx Gezy = Oy, Eezz = (E/EZ)O'ZZ—VZO'XX—VZO'”,,
T = Tk, T, = Tk, T = Ak,
T, = Tk, 1, = *Tk,,, T, = c?Ak,,, (11)
Tox = Czrzkzx’ Toy = Czrzkzyv Tz = CzAzkz:'

In this the factor ¢? is introduced in order that the I and A have the same dimension as the
E and G.
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Vanishing of the coefficients I', ', A and A, reduces the system {10) and (11) to a known
form for media unable to support moment stresses, inasmuch as then e,, = e, = iy, etc.
in equations (10), as a consequence of o, = g,,, etc.

4. INTEGRO-DIFFERENTIAL-EQUATIONS FORM OF THE PROBLEM

In order to derive a two-dimensional system of stress-—strain relations from the three
dimensional system {10) and (11) we first write (10) and (11) on the basis of equations (2),
(4) and (8) as a system of integro-differential equations. It is sufficient to write out nine of
these eighteen integro-differential equations. The remaining nine are analogous in form.

E{ N o £ N f~ [ezx o (S Z)kzx].x di}

0
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Geww = 0= [ (Gt ope,)di (15)
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2Tk, = q; — f (Taxx F Tyxy 02— 0 AL, (1%

CZAzkzz = QZ_ - J‘ (sz,x + Tyz,y + Oxy™ ny) dC (20)

A two-dimensional theory as a rational consequence of the system (12) to (20} is now
based on the concept of a smallest characteristic length L, this length being large compared
to the plate thickness 2c. Briefly, Lis that length which permits-writing the order of magni-
tude relations:

€.rx = Oleg,/L), 0. = Olo,/L), etc. (21

Equations (21) may be used systematically by introducing dimensionless coordinates
% = Lx, § = Ly, % = czand by expanding the solutions of the resulting system of equations,
having independent variables %, , £, asymptotically in powers of the small parameter ¢/L.
For the present purposes it is more convenient, and effectively equivalent, to make use of
Goldenweiser’s concept of iterative procedures in connection with the step from three to

two dimensions [1].
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As a point of departure for the iterative procedure, we rewrite part of the system (12)
to (20) with the help of equations (1), (5) and (8) in a form more convenient for our purposes,
as follows:

E{Bxx+zxxx+ f [ezx_(C'_Z)klex dC = Oxx— VO,
0
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CZA(gyx,x—gxx,y+f kzz,x dC) = Txz» (18*)
0

PTokoy = Toes Ak = 1, (19*,20%)

The corresponding equations (15*) and (17*) are the same as (15) and (17), respectively.

Equations (12*) to (20*) involve the stresses o,,, 6,., 0,,, 0., 6., implicitly only. In
order to take account of the boundary conditions for z = +cfor g,,, 0., and o, the system
(12*) to (20*) is complemented by the relations

piopit [ uatan)di =0 gt [ Guate,)di=0. @)

¢ ¢
pz+ _p; +f [px_ —f (Gxx.x+ayx,y) drl+‘cxx,x+ryx,yj| dé’

—c x

c 4 ¢
+f I:py' -f (Oyyxt0y,) df]""‘fxy,x-f-l'yy‘yjl di=0. (23)
—c ~c ¥
At the same time, equations (12*) to (20*) remain subject to the six boundary conditions (7)
for 7., 7,,and 1,,.
For simplicity’s sake it will be assumed from here on that the only tractions applied
to the faces z = +c are those corresponding to the case of transverse bending that is we
will set

: T=qf=q; =0 pf=+ip (24)

P =p =q
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5. THE ITERATIVE PROCEDURE

We use as a priori assumptions for an iterative procedure that x and y-derivative terms
in the integro-differential equations (12*) to (20*) will be small compared to all other terms.
Designating quantities pertaining to the nth iterative step by &), etc. this means that we
solve (12%) to (20*) (with the assumed simplifications in regard to face tractions) by writing
forn=1,2,3,...

2
R

z e
—vz{§p+f [f (6 P+l PV dp—0 2= P — ""“J d¢
+f [f (602 +al Ndp—10 P -1 P — ‘."M“] d} (25)
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0
T =<, A = 1, (32, 33)

with €2, ¢{7 P, etc. all being zero, by definition, and with p being of the same order as the
terms assomated with it.
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In addition to this, equations (22) and (23) imply the relations

j'wﬁuww»c=a f(@fwwmﬁ=a (34)

=-C

C 14
p— f [ f (o &"2x+a‘y";y)dn+r§"£,x+r‘y§’.y] d¢
bt X

(35)
c {
[ | otaregaans g, | a-o
- - Wy
and the face boundary conditions for 7., 7,,, 7,, are written in the form
z = +c, wW=0, W@=0 =0 (36)

Finally, the associated two-dimensional compatibility equations which follow from (3)
and (5) are written as

B e (652 + 65D+ 801, = O 7
4’{(")_,{_,((")) h‘,:',ly——(y(" n_ ,(n 1)).)” (38)
K ) = 3G =), (39)

6. THE EQUATIONS OF THE FIRST STEP OF THE
ITERATIVE PROCEDURE

Equations (25) to (39), for the case n = 1, reduce to

E{e+ 2402} = o ooty 0
E{s;ly)+%z(K§1),)+K“) f k(“dC} H1+v) (0 + ol —1lD), (41)
oo+ [(varf = e, @

0
Gell) =0,  Ee) = —v, (oW +oll), (43)
Tl = 1), 0= W), (44)
STHY = ) A = o) (45)

Equations (34) to (37) remain as is with ““(1)”" written for *“(n)” and equations (38) and (39)
become
3§+ kD) -k, =0, il — 3k + i), = 0. (46)

.Vyx

It follows next from (41) and the corresponding equation involving &!!) that

{sm el — 2f KLd } (14, @7)
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This, together with the second equation in (45) and with the boundary conditions (36) for

i), gives

1 _ . 1) __ 1
Egcy) - gfvx)v k:ez) - Oa T(zz) = Q. {48)

Similarly, it follows from (42}, the first equation in (45) and the boundary conditions (36)
for ! that

=0, kD=0, V=0, (@9)

Having (48) and (49) we have then as expressions for the non-vanishing components of
stress implied by the equations of the first step of the iterative procedure

(1=v)o'R = B +vel) +zxQ+vzell),  (1=v)eld) = ... (50)
1 1 X
(1+vol) = (1+v)ol)) = el + 600 + 26l + zxlY), (51)
1y _ .2 1 {1y _ 1.2 {1 i
i) = ¢ Txll), 1) = 3T + 1), (52)

The six functions {2, e+, k{2, kl}), k) + k{2 in this are subject to three compatibility

equations consisting of the two equations {46) and of
) 6840y 0, = O, (53)

and of three equilibrium equations, which in accordance with (34) and (35) are of the
form,

[ ewcrompar=o. [ e@erod o (54

¢ 5
[ AT totea o ja

+mmH&hHQMﬂmJ@=n (55)

Equations (50) to (55) may be recognized as the results of classical thin-plate theory,
generalized by the incorporation of the moment stress terms 7, in the form of six differential
equations for the six quantities &\Y, &\, ell) + {0, k), x{}) and k() +«!}. The order of this
system is not changed by the incorporation of the moment stress terms and, accordingly,
an appropriate version of the classical Kirchhoff boundary conditions is associated with
these equations.

The remaining measures of strain and stress, as given by the first step of the procedure
are el}) (and e!})) and ell’ as in (43), while on the basis of (8) and (1) and consistent with the
foregoing,

¢9=~f<®m+¢w@, (56)
-

and
{1y . (1 ! 1 1
Gxz sz} tgrx),x Ti'x),y * (57}

with corresponding expressions for ot} and ¢{}’, and

ol = —%p-f (00 40t dL. (58)
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7. RANGE OF VALIDITY OF ITERATIVE PROCEDURE

In speaking of an iterative procedure we admit the possibility of procedures differing
from the one proposed in Section 5. To see the limitations of the proposed procedure we
note that the characteristic length L associated with the ‘““classical” system of differential
equations (46) and (53) to (55) will be the smallest geometrically representative width of the
plate. It is then seen that the perturbation terms in the second step of the procedure will be
of order ¢/L and of order ¢?/L?>—except for the effect of differences in orders of magnitude
in the elasticity coefficients—relative to the quantities &2, etc. which are to be determined.
Assuming v and v, of order unity we will then deduce relations such as:

2 E : 2T : cA :
<t gt LEST
as conditions for the validity of the iterative procedure as proposed.

Physically, the principal meaning of these restrictions is that when E and I are bounded
from above in this manner, (or G bounded from below) then transverse shear deformation
comes out as a higher-order-of-smallness effect, leading automatically to a Kirchhoff-
type theory. When E and/or I” are not bounded as in (59) then transverse shear deformation
will play a role and not all x and y-derivative terms in the integro-differential equations
(12*) to (20*) may be relegated to the class of higher-order-of smallness terms, as is done in
the system (25) to (33). It is in this sense that the asymptotic theory of Green and Naghdi [2]
appears to be one for which ¢2I'/L2G = O(1) while at the same time E < T..
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AbcrpakT—ITIpu pa3paboTke HEAABHO NpeaaraeMoro MeToda PeELLeHHsl JIBYXMEPHOM Teopuud 0605104eK
Ha OCHOBE TPEXMEPHOH TEOPUHU YIPYTrOCTH, UCCJIEAYETCS MOAPOOHO CrieLMasIbHbIA ClyYail niockoil nnacTu-
HKH. B acriekte HayansHOH TOYKM, MPUHUMACTCS COOTBETCTRYIOLIHIA BADMAHT TEOPHH YIIPYIOCTH, 3aKIIOY-
atolMid KaK MOMEHTHbBIE HANPSOKEHHS, TAK U HANPSHKEHUS BBI3bIBAIOLLWE CUAMM. YKa3blBAETCH, YTO
HEKOTOpast NpsiMasi, HO HE pAaHBUWIE YYHTHIBAEMAas DEAYKUMS TPEXMEPHbIX YDaBHEHWH paBHOBECUS M
CILJIOUIHOCTH IPUBOAMT K COOTBETCTBYOUIMM ABYXMEPHBIM YPEBMEMIIM DABHOBECUS TaK M CIIJIOMIHOCTH,
HECMOTPS Ha COXPAHEHHE TPEXMEPHBIX ACMEKTOB 3a7a4H, B (opMe CHCTEMBI MHTErpo-IHbdepeHINANBHbIX
ONpene/AroUX YPABHEHUH. PelleHne 3TUX ABYXMEPHBIX ypaBHEHM OKa3bIBAETCS TOTJA €IMHCTBEHHBIM
METOAOM, KOTODPBIH NPOABISET NAPAMETPHUYECKOE DPA3NIOKEHHME WM MTEPALMIO, B CBA3M C YCIOBHEM
HaiMEHbUIEH XaPAKTEPHCTUYECKON AJIMHBI IPH CPAaBHEHUHU K TOJILUMHE TUIACTHHKH,



